Loading...

Isolating Induced Pluripotent Stem Cells by Using the WOLF G2 to Sort Stemness-Related Surface Markers

Introduction

Induced pluripotent stem cells (iPSCs) are developmentally equivalent to embryonic stem cells (ESCs) in many aspects of their regenerative properties and proliferation. iPSCs hold advantages over ESCs partly because they lack the same ethical constraints posed by the scientific community. Exogenous factor-based reprogramming of somatic cells into a pluripotent embryonic stem cell-like state was described in Dr. Shinya Yamanaka’s seminal work in 2006.1 Yamanaka’s discovery enables current iPSC technology; furthermore, iPSC technology enables ethical derivation of instrumental tools vital to research spanning fundamental biology, regenerative medicine, drug discovery and, more recently, food sciences.

The culture, handling, and sorting of induced pluripotent stem cells require special care for reliable results. Culturing iPSCs is a time consuming and laborious process with challenges that require a substantial commitment of energy and resources. iPSC technology has increased the availability of cells to study many applications that are otherwise diffi cult or impossible, such as neuroscience and predictive disease modeling.2 Maintaining the naïve state and pluripotency (ability to differentiate into three primary germ layers) is reliant on regulating variables such as nutrient composition, temperature, and other developmental cues. Differentiating cultures are heterogeneous, and although maintaining a homogeneous stem cell culture is possible, researchers often need other tools to succeed. The WOLF cell sorter is advantageous to the success of gently sorting homogeneous stem cells and eliminating unwanted cells. In addition to the WOLF cell sorter, the WOLF G2 can also facilitate these gentle sorts by increasing the color capabilities with the addition of ...

 

Want to read more?

Download the full application note now!

Downloads














* Pflichtangaben